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Introduction 

Simple…but Complex 

The measurement of Out of Home audiences is simple in theory yet can be fiendishly complex in practice 

to carry out.  

In theory, to create an accurate estimate of the number and types of people who have an opportunity 

to see advertising appearing on billboards, bus shelters, station carriages, shopping mall signs, taxi sides, 

underground station walls, car park panels and all the myriad environments in which Out of Home 

advertising appears, we need five things: 

1. A frame database containing information on each frame or panel that needs to be measured – 

including its exact location (latitude and longitude) on a digital map and details of any 

information about the site that will influence peoples’ likelihood to be able to see it; 

2. A count of the people travelling (either walking, driving, cycling or otherwise moving) along each 

street, road or route and through every location where OOH frames are sited; 

3. An indication of the typical travel behaviour of individuals over time; 

4. A way to adjust raw counts of people passing frames to a more realistic estimate of how many 

of them will have had a chance to look at the advertising as they pass; 

5. A method and system to process all these data into usable information. 

There are multiple possible ways to approach each of these challenges. But for an accurate and credible 

estimate of audiences, the range of choice is narrower. When Route was launched in Great Britain in 

2013, a number of methodological choices were made. The methods have not changed fundamentally 

over the years; but they have been adapted and refined as the medium itself has changed and new 

techniques have been tried and tested. 

Route – an Overview 

Route was a pioneer in OOH audience measurement, with many ‘firsts’ to its credit. So was its 

predecessor, POSTAR, the body managing OOH audience measurement prior to Route. POSTAR focused 

largely on measuring roadside billboards and bus shelters; Route was designed to capture all the 

different environments in which OOH advertising appeared, including on trains, taxis and buses, inside 

underground stations and shopping malls as well as alongside roads. 

One task was to map all the poster locations, ultimately capturing the information necessary to estimate 

how many people would be able to see particular frames. This included the precise geographical 
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position of each site and physical information affecting its visibility to passers by – such as whether any 

obstacles obscure the panel from any points, the direction it is facing and its size etc. 

These data were collected for around 240,000 roadside frames across the country (the number in 

September 2019 stood at 391,156 frames covering multiple environments, including 96,000 roadside 

billboards). 

The next challenge was to know how many people were driving, cycling, walking or otherwise passing 

along every public pathway in the country. ‘Public pathways’ include not just major roads and city 

streets, but the corridors inside underground and overground stations, the escalators inside shopping 

centres, the inside and outside of airports and the interiors of trains. In short anywhere people went 

and could potentially be exposed to OOH advertising. 

The solution to this was to create a Traffic Intensity Model (TIM). The TIM used a combination of limited 

traffic counts, sets of attributes for each kind of road and a modelling process to create these estimates 

for outdoor environments along routes where people pass in view of a poster. Different approaches 

were later added to cover indoor environments. 

In this document, we review the Traffic Intensity Model methodology in detail and look at how it has 

adapted to changes in the medium and developments in measurement techniques. In the Appendix, we 

include a formal mathematical overview of the model. 

Other components of the system include a Travel Habits Survey which we use to get a picture of the 

types of people represented in these numbers (e.g. gender, age, education levels etc.) and to 

understand how individuals travel between different points. 
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The Traffic Intensity Model 

The Traffic Intensity Model (TIM) enables the following: 

1. Traffic flow estimates for each link in the network; 

2. An assessment of the reliability of each estimate – used in the modelling process; 

3. The ability to update the estimate when new or updated data is available; 

Data Layers 

The model is organised into data ‘layers’ which are then subject to ‘flow models’ that transform the less 

than perfect data into traffic estimates for each road link.  

The first layer in the system is a digital map of Great Britain. This is licensed from HERE Technologies, a 

company which provides mapping and location data. All roads and pedestrian areas of the country are 

represented in the HERE database. It has also been expanded into indoor locations. Every road on this 

map consists of what are called links, sub-links and nodes, where a link is a section of road, a sub-link is 

a smaller section of road and a node is the start or end of a link.  

The second layer of data in the TIM consists of a series of characteristics associated with each of these 

links. These include the road type, the presence of buses, parking places, traffic rules (e.g. is it a one-

way or two-way street? Are there speed limits or other restrictions?) and so on. This is sometimes 

referred to as the network topology. 

Links are classified into five types, each of which have different levels of traffic intensity: 

Functional Class Description Road Types 

1 

Roads with few, if any, speed changes, controlled access, 

high volume, maximum speed travel between major 

metropolitan areas 

Motorways 

2 
Roads with few, if any, speed changes, high volume, high 

speed travel to and from Functional Class 1 roads 
Major Highways 

3 
Roads that connect Functional Class 2 roads at a high 

volume with lower mobility 
Non-primary A roads 

4 
High volume of traffic movement at moderate speeds 

between neighbourhoods 
B roads 

5 All other roads Local roads 
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In the 2019 version of TIM (TIM5) Great Britain had a total of 4,064,181 road links, were further divided 

into 26,512,186 sub-links. This additional sub-classification enables us to apply traffic flows at a more 

detailed and granular level, reflecting the ways cars and people move along them.  

The table below shows TIM5 links split by functional class and their count, length and average daily 

vehicular traffic (avg. number of cars per link). FC5 roads, which make up more than three-quarters of 

the roads by length – only account for 14% of traffic volumes. 

 

Functional 
Class 

No of links Length of links 
(in miles) 

Average traffic intensity 
(number of cars per day per link) 

Share of Daily 
Traffic Volumes 

1 51,109 7,506 30,751 14.3% 

2 172,851 13,532 12,649 19.9% 

3 295,639 18,126 10,618 28.5% 

4 481,624 34,079 5,363 23.5% 

5 3,062,958 229,241 497 13.8% 

Total 4,064,181 302,484 2,707 100.0% 

This information enables what is known as a directed-graph to be built so we can understand the way 

traffic flows. A one-way street obviously allows traffic to flow in only one direction; a two-way road 

consists of two opposite links in the directed graph.  

Links are also classified according to whether most of the traffic will flow through them or will originate 

or terminate at the link. A car park or residential cul-de-sac, for example, will be an origin or destination; 

an A road running through a city suburb is more likely to be a flow link. 

A third layer added to this map is traffic count data from the Department of Transport in the form of 

Annual Average Daily Flow (AADF) information. Around 22,758 of the 4.1 million road links across Great 

Britain offer traffic counts.  

Just a handful of these offer continuous traffic counts (where vehicular volumes are measured and 

reported at all times of day and for every day in the year). This, in theory, would represent the ideal 

dataset for building an OOH measurement system.  

In practice, such a dataset would be computationally challenging, demanding the ingestion of massive 

data volumes from every road in the country every day of the year. The data processing challenge is 

even greater considering the need to cover more than just roads and more than just cars. 

As well as traveling by vehicle, people walk and cycle. They travel along a whole range of routes other 

than roads where poster advertising features, including on pavements, in corridors inside underground 
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stations, in airport terminals, on escalators, in and around shopping malls and on train station platforms. 

They also sit inside train and underground carriages where posters can be seen. 

Vehicle Traffic Counts  

The Department for Transport compiles traffic statistics using data from around 8,000 road side 12-hour 

manual counts and continuous data from a few hundred automatic traffic counters.  

The street-level road traffic estimates provide the number of vehicles that pass each ‘Count Point’ 

location. They are compiled for each junction-to-junction link along Great Britain's major road network, 

and for a sample of locations on the minor road network. The following statistics are generated: 

• Average annual daily flow: the number of vehicles that travel past (in both directions) the count 

point on an average day of the year 

• Average annual daily flow by direction: the number of vehicles that travel past the location on 

an average day of the year, by direction of travel 

• Raw counts: Where a raw count has been conducted at a given location, this provides the 

number of vehicles that travel past the location on the given day of the count, by direction of 

travel, for each hour between 7am to 7pm. 

Manual traffic counts 

The manual counts are conducted on a weekday by a trained enumerator, for a twelve-hour period (7am 

to 7pm). They are carried out between March and October, excluding all public holidays and school 

holidays, due to weather and light considerations at the count locations. 

Manual counts on major roads: It is not possible to count every single location every year; therefore, 

the sections of road are surveyed on either an annual basis or on a cycle of every 2 years, every 4 years 

or every 8 years. The frequency is based on the traffic level. This means not every link in the major road 

network has a 12 hour count every year. 

Manual counts on minor roads: Due to the vast number of minor roads in Great Britain it is not possible 

to count the traffic on all of them; instead a representative sample of minor road sites are counted each 

year. The difference in traffic between the two years is then applied to overall minor road estimates to 

calculate estimates for the latest year. 

Automatic traffic counts 

The Department for Transport's road traffic statistics team have approximately 300 automatic traffic 

counters at locations on Great Britain’s road network. The locations represent a stratified panel sample, 

providing observations that can be used to estimate in-year traffic variations by road and vehicle type. 
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Automatic traffic counters are permanent installations embedded in the road, which combine Inductive 

Loops with Piezoelectric Sensors in a ‘Loop – Piezo Sensors – Loop’ array, and record information about 

vehicles passing over them, including vehicle length and wheelbase, to classify vehicles. 

The Department for Transport’s road traffic statistics also make use of automatic traffic counter data 

collected and maintained by other organisations. These include: 

• Highways England: operates over 10,000 automatic traffic counters on some of the motorways 

and ‘A’ roads in England. 

• Transport Scotland: operates more than 900 automatic traffic counters on some of the 

motorways and ‘A’ roads in Scotland. 

• Transport for London: operates over 300 automatic traffic counters on roads in London. 

Travel speed data is culled from the Travel Habits Survey (calculated from the time it takes for people 

to travel from one destination to another captured by the MobiTest meter carried by our panel). 

The Modelling Process 

All these layers of data are used to estimate traffic volumes for links with no count data. To do this we 

need to model how traffic flows between and amongst all the known count points. Complex regression 

models are used, with the computation split into two independent phases.  

In the first phase, a simulation model is applied to construct an initial flow and a reliability estimate 

based on the traffic counts, network topology and link classifications just outlined. In the second phase, 

this initial estimate is balanced to satisfy flow conservation (i.e. the amount of traffic entering an 

intersection needs to equal the amount of traffic exiting the intersection). 

For example, if a count station is located at a T-junction leading from one A road onto another, we will 

have a count of the number of cars entering the junction. There are two choices available: some vehicles 

will turn to the left and others to the right. Those turning right will eventually pass another intersection, 

with further choices available to them – perhaps to carry straight on or to turn. 

At some point after one or more intersections, another count station will be passed, enabling an 

accurate count of vehicles entering and leaving the links either side of it. The job of the flow model is to 

quantify what happens between these count stations using everything known about the characteristics 

of the road links in between and to ensure the number entering and leaving each link is identical.  

Vehicle Occupancy As we are counting people rather than the vehicles they travel in, we need to 

estimate the average number of people travelling in each car. For this, Route uses the National Travel 

Survey (NTS), which yields occupancy levels of between 1.4 and 1.5 depending on the size of the area 

being measured. 
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Counting Pedestrians - Overview 

Pedestrian flows are handled differently to vehicle traffic flows. The first step is to list what are called 

‘Points of Interest’ (e.g. schools, bus and train stations, shopping malls etc.). These are the places 

pedestrians tend to gravitate towards – as cars do to road links. For each Point of Interest, we look at 

census data on the size of the resident and working population in the immediate area. For some POIs, 

detailed pedestrian count data is also available.  

For Route, the country is divided into a little under 230,000 ‘output’ areas, detailing the size and 

composition of the population and the number of cars owned by each household. We access count 

data from some 988,000 locations (most of them bus stops). The table below has the details.  

Count station 
reference 

Count description Number of 
Count 
points 

C001 Output area counts - including daytime counts from Census data (227,759) * 

C002 
RODS (Rolling Origin & Destination Survey) data for London 
Underground (entries and exit) plus Patronage data for DLR 314 

C003 
LENNON (Latest Earnings Network Nationally Over Night) data for 
train stations plus Glasgow subway and Light Rail 

2,792 

C004 CAA (Civil Aviation Authority) data for Airport 31 

C005 Volume on HERE links - Buses - bus stops 875,923 

C006 Experian data for Supermarket 17,995 

C007 Experian data for Shopping centres 1,774 

C008 
PMRS (Pedestrian Market Research Services) survey data for 
footfall 

14,729 

C009 Internal client - Schools 48,118 

C010 Leisure facilities 5,599 

C011 Point-X data for car-parks 14,790 

C012 HERE data for Service stations 138 

C013 HERE data for Hospitals 1,380 

C014 HERE data for Bus Stations 160 

C015 HERE data for Tourist attractions 992 

C016 HERE data for Post offices 2,456 

C017 
Sourced and approved extra counts (bespoke PMRS, MO & LDC 
counts) - Shopping locations other 753 

* We have adult population data for 227,759 output areas, but the counts are spread over all residential postcodes 

in the area and are not single POI counts 

The next step is to build a gravity model, a technique for estimating the flow of people between any 

two places based on the size of the group and the distance between the points. This is designed to 

expand the count data we have to the approximately 4 million total number of pedestrian links. 
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The ROUTE Approach in Detail 

We measure the journeys of both the urban and suburban population. The challenge is to distinguish 

between pedestrian and vehicular movement, especially in built-up areas, where – whether you are 

traveling by foot or in a vehicle - speeds tend to be low and the GPS signal can sometimes be lost. 

The second-by-second GPS data captured by the MobiTest meter is used in two different ways: 

 - To determine the sequence of street links along which people travel 

 - To map their intersections with Points of Interest 

The sequence of street links represents each respondent journey. The GPS data are matched with the 

roadside network to determine which streets/roads were travelled on by the respondent. For each of 

the street links, we have information about the time they spend on this link and on the average speed 

of travel. This, together with overall respondent travel patterns and knowledge of any access restrictions 

related to the different street links, helps us to determine their mode of transport. 

Intersections with Points of Interest provide information about likely visits to these locations. 

Step 1 - POI visits 

We evaluate visits to Points of Interest based on second-by-second GPS traces at and around each 

location (‘buffers’ are drawn around Points of Interest to indicate the likely area within which people 

will be heading to or away from each place). The size of each buffer will vary according to the location 

type. For example, a major train station or shopping centre will have a much larger buffer than most 

bus stops. All visits longer than three minutes are initially assumed to represent a stop. Each stop is 

matched with a location and a Point of Interest. Data for any measured POI are cleaned further by 

looking at travel behaviour before and after the stop to be as certain as possible that people are, in fact, 

walking rather than travelling in a vehicle.  

Step 2 – Travel survey population assignment 

The Travel Survey sample can never be large enough to accurately represent visits to every single Point 

of Interest in the country (which is clear when we compare Travel Survey data with measured external 

counts – e.g. of shopping mall footfall). So, a certain amount of data integration is carried out to enable 

projection of our sample to the population (for example, we segment people according to their typical 

travel behaviour on weekdays vs. weekends). From this procedure, we generate average daily 

pedestrian flow estimates for each Point of Interest.  

The importance of the travel survey population assignment lies in the opportunity it affords us to 

evaluate the pedestrian flow (‘gravity’) to and from Points of Interest and to merge the gravities 

between multiple POIs close to one another. This latter situation arises when, for example, a bus station 
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is next to a train station and we need to determine how many people are visiting either one of these in 

isolation or both. 

Step 3 – Footfall counts 

We derive pedestrian counts from a range of sources including direct footfall counts (mall footfalls, 

station usage, etc.) and indirect estimates (ticket sales etc.). For a list of count sources, see the table on 

P8. The counts are grouped into three categories: 

C001 residential pedestrian counts 

Residential counts are computed for links connected to houses/address points. The census population 

of each output area (OA) is assigned to address points on links inside an OA ‘polygon’ (boundary).  Each 

link and sub-link then receive part of the total population weighted by the number of address points 

assigned to it.  

Links with a higher density of address points generate higher residential population numbers. The 

gravity is limited to the residential link and links directly connected to it by end nodes. An experimental 

exercise based on travel survey respondents assigned to links confirmed that a longer gravity 

extrapolation creates duplication with bus stop gravity or POI gravity. 

The residential component represents pedestrian flows close to places of residence. A general factor of 

2.5 visits per day is applied to each residential link value as an average. It results from an initial travel 

survey analysis of average trips made during the day (in and out)  

C00x Points of interest 

This input is a collection of different data sources representing Points of Interest. Gravity distribution 

usually means an overlap of different attractors in proximity. An empiric distribution distance and 

merger of overlapping volumes results from multiple tests and iterations. The final settings deliver 

results with explainable volumes close to individual POI attractors as well as volumes between 

attractors.  

C005 Bus stops/links turnover 

The first version of the model was based on distribution around bus stops. This generated volumes on 

links with bus stops. In some cases, these links could measure greater distances. We have since started 

to evaluate all links covered by bus lines to make the bus gravity connected and gap-free. We also 

enhanced the model by making the finer division of links into sub-links; we have succeeded in achieving 

a better representation of buses within the local traffic volumes. Short sub-links have enabled us to run 

more reliable gravity distributions. 
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Examples - Curves applied in TIM PED at bus stops 

 

 

Step 4 - Gravity function and Gravity Processing 

The next step concerns links (i.e. routes) connected to Points of Interest. We assume that visitors have 

been using connected links i.e.  travelling along adjacent streets and pavements to access individual 

POIs. To simulate this, we apply a technique known as gravity distribution, whereby we assign 

pedestrian volumes to connected links. The intensity (number of pedestrians we count as travelling 

towards or away from a POI) falls as we get further away from the location. Where two POIs are close 

together, we take the data we have on the combined area around the two points and make certain 

assumptions to avoid duplication of pedestrians and overestimation of the final traffic volumes. This is 

based on learnings from Step 2. 

Example – PED model 

This image shows a gravity model distribution and how the counts spread in relation to other counts. 
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In all the TIM PED versions, HERE links comprise the main geography. From TIM 5 onwards, we have 

divided links into shorter sub-links. TIM PED is based on HERE links which allow pedestrian traffic (AR 

Pedestrian = “Y”). Other HERE links restrictions are ignored (one-way, tunnels, ramps, bridges) - 

pedestrians are allowed anywhere. 

Example – POI and spider web of gravity links connected to each point 

 

 

Gravity Processing 

Gravity processing of TIM 1 to TIM 6 was based on scripts running on three separate count threads 

(described step 3): 

- Bus stops and links 

- Residential 

- POIs 

The final gravity was created as a combination of all three components. 

Scripts are generated around each POI attractor gravity polygon (boundary) and these are intersected 

by sub-link centroids. Using centroids (points) instead of sub-links (lines) improves performance. The 

difference in gravity distribution is very low; the processing speed is approximately 10x faster than by 

using points. 

Curves were converted in a series of steps where each step represents a specific gravity distance. Each 

distance has a defined gravity factor. This factor considers the number of connected sub-links dividing 

the volume after gravity application by the number of connected sub links. 
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This means that locations connected to 4 different sub-links have 2 times faster gravity decrease than a 

location connected to 2 different sub links.  

Example – Gravity in 2 directions, 3 directions and 4 directions 

 

 

Examples - gravity by distance from home, as measured on the Travel Survey 

 

TIM Updates 

The Traffic Intensity Model (TIM) was first designed by MGE Data in 2008 and implemented in Great 

Britain the following year and in Croatia three years later. The approach was also implemented in The 

Czech Republic and Poland in 2015. But the TIM has not stood still. 

The various steps in the process of creating and managing the Traffic Intensity Model are complex and 

challenging. During the process, we have learned a great deal about all the ways in which traffic 

estimates can be improved – whether it be by ensuring the accuracy of the source data, adjusting some 

of the model procedures or adding new environments. 
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As a result, the TIM implemented back in 2009 has been updated roughly every year since – as at the 

end of 2019, we are using TIM V.5.0, but will shortly launch V.6.0. The main updates to the model in 

each version have been as follows: 

TIM VEH Versions 

TIM 
Version 

Main Developments Date 

1 Original version 2009 

2 
Update to counts, improvements to flow 
distribution 

2012 

3 

Update to counts, geometry (previously missing 
road segments filled), extra granularity of links, 
bespoke counts added as well as local authority 
counts, update to VA method, speeds 

2013 

4 Updates to counts 2015 

4.2 update to geometry and counts 2016 

4.3 update to peds only to include traffic restriction 2017 

5 
Update to counts, geometry, move to sub-links, 
update to speeds 

2018 

TIM PED Versions 

TIM Version 
 

HERE MAP Ver. Geometry Inputs and 
updates 

Methods 

1 2008q2 Links RESID BUS POI Initial Gravity v1 
2 2008q2 Links RESID BUS POI Gravity v1 
3 2012q4 Links RESID BUS POI Gravity v2 
4 2012q4 Links RESID BUS POI Gravity v2 
4.2 2015q3 Links POI Gravity v2 
4.3 2015q3 Links POI Gravity v2 
5 2017q1 Sub links RESID BUS POI Gravity v3 
6 2018q1 Sub links RESID BUS POI Gravity v3 

TIM PED updates were historically based on following changes: 

- HERE Version 

- Input data updates 

- All three inputs RESID, BUS POI or selected POI inputs 

- Geometry set-up – links and sub-links 

- Gravity distribution 

o Gravity V1- initial version, distribution low volumes to very long distances  

o Gravity V2- optimised to shorter distances with minimum impact on final volumes on 

links (faster processing speed) 
o Gravity V3- optimised to generate distribution results on sub links instead of original links 
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APPENDIX 

TIM 
A formal description of modelling and creating the individual vehicle 

traffic intensity map 
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Modelling the individual vehicle traffic intensity map 

An Informal problem description  
 

The starting point is an accurate and detailed topological map of a road network. At some road links 

periodic measurements of traffic density are available. The objective of the model is to estimate 

the traffic density (1) at road links where measurements are not available (due to, e.g., cost or 

other factors). This estimate should also be provided with a measure of its reliability (2). A 

necessary feature of the estimates is, that they should match up at the intersections (3). That is, 

the sum of the incoming traffic densities at an intersection should equal the sum of the outgoing 

traffic densities.  

The problem can be divided into two parts: Estimate calculation (1), subject to the condition (3) 

and Reliability assessment (2).  

Notes to the informal description 

(1): Traffic density is measured as number of vehicles / units in time. It is important that this is either 

a pure empirical measurement or a simple arithmetic mean of several empirical measurements. In 

fact, in the following it will be assumed that given a measured density we can calculate the total 

number of vehicles travelling on the given road link in a specified amount of time. 

(2): The measure of reliability is a real number on a scale ranging e.g. from 0 to 1 with 0 being the 

lowest and 1 the highest. It is not required that this is the probability of the estimate being valid. 

(3): This is a requirement which is valid for the total amount of traffic. It is less clear, that it should 

also hold for the average amounts. If the average is a simple arithmetic mean, this requirement is 

still valid. In other cases, it might fail. That is why we require in (1) that the total number of vehicles 

can be calculated from the given measurements. 

Introductory remarks 
Problems of this kind are studied in the branch of applied mathematics called Operational Research. 

This is an established field of mathematics that goes as far back as the 18th century and the work 

of Ch. Babbage (Sodhi 07). Modern Operational Research arose during World War II with the work 

of P. Blackett and others in UK and G. Dantzig in USA. Since then it has experienced enormous 

growth. With the introduction of computers applications of theoretical results have become readily 

available to the public at large and Operational Research methods have seen wide adoption in 

business, industrial engineering and other areas. See (Taha 06) or (Wikipedia 09) for more 

information about Operational Research. 

As an established field Operational Research has numerous scientific journals where new results 

and case studies are published. The following is a brief selection: 



 
 

• Information Systems Research  

• Mathematics of Operations Research  

• Operations Research: Journal of the Institute for Operations Research and the Management 

Sciences  

• Transportation Science  

The formal model 

In designing a formal model for the real-world situation, we need to extract the essential features 

of the situation and make some simplifying assumptions to make the problem tractable. 

Feature #1: Graph structure  

The underlying configuration of the road network is easily described as a mathematical structure 

called a directed graph. The first approach where road links correspond to edges of the graph and 

intersection nodes to vertices of the graph will fail, however, in our specific case. The road network 

has associated with it certain traffic rules (e.g. no left turns, etc.). Consider the following schema of 

a road intersection together with arrows indicating allowed flow of traffic: 

 
This schematic situation cannot be modelled by a graph where the edges would be in one-to-one 

correspondence with roads and vertices with intersections. We must therefore be more careful. 

Each connection (road link) R between two intersections A, B will be modelled by two graph vertices 

(RA, RB) corresponding to the two intersections and two edges (RA->RB, RB->RA) corresponding to 

the connection leaving A and heading to B (RA->RB) and the connection leaving B and heading to A 

(RB->RA). A vertex RA will moreover be connected by an edge with all vertices TA where T is a road 

that a vehicle can take after arriving at intersection A via the road R. The previous schematic 

situation will now look as follows: 



 
 

 

This representation is completely general. It should be noted, that the above graph represents a 

situation where no U-turns are allowed. If a U-turn were allowed when arriving to the intersection 

A via the road R3, we would need to add the edge R3A->R3A to our graph. 

Feature #2: Density Measurements 

We assume that the traffic density is measured at single road links rather than intersections. Also, 

we assume that the density is measured in both directions separately. The density measurements 

will be represented by assigning a number to the respective edges in our graphs. 

Simplification #1: A static model  

Traffic is a naturally dynamic phenomenon where the densities change over time. A completely 

accurate model would need to take this into account. There are two main obstacles to a dynamic 

model, however. The first is its inherent complexity. Due to the size of the underlying structures (in 

the order of millions of vertices and tens of millions of edges) it is doubtful, whether constructing 

and evaluating such a model would be computationally feasible.  

A second obstacle is the static nature of available data: the density measurements are averages 

over time intervals considerably larger than would be required to provide data to a dynamic model. 

It is assumed that, at this granularity, a static model will not introduce more error then already 

present in the available data. For a dynamic modelling approach, see e.g. (Birge & Ho 93), (Davis & 

Nihan 93) and (Boyce et al. 93). 

Estimate calculation 
Based on the above model a first approximation to the solution of the is the following formulation:  

 

 



 
 

 

 
 

 
 

Given a directed graph G = (V,E) find a function f: E → R assigning to each edge a traffic density 

subject to the following restrictions: where M is the set of edges corresponding to roads, where 

traffic density data is available. The second equation formalizes the requirement that the estimates 

match up at intersections (3), that is the sum of inflowing traffic densities equals the sum of out 

flowing densities. 

However, in this formulation the problem will typically have many different solutions. For example, 

the following picture shows three such solutions for a simple problem with four vertices and three 

edges (the measured values me are indicated in black, the computed values f(e) in red):  

 

 
 

To choose between these solutions we need some other criteria. A natural criterion arises out of 

the underlying road network data: we know the size of the respective roads and we know their 

capacities. In the above example, we might know that the road from V2 to V4 is a highway, whereas 

the road from V2 to V3 is a small local road.  

Thus, solution C is very unlikely: the amount of traffic going along a highway will probably be bigger 

than the amount of traffic going along a local road. Trying to build this intuition into the model, we 

may try to assign a cost ce which is inversely proportional to the size of the corresponding road to 

each edge in the graph. Also, each road has a capacity – a limit on the amount of traffic that can 

flow along it. Formalising this, we want to find a solution to the above problem which would satisfy 

the following restrictions (capacity)  

 

 
 

and minimise the total cost: 

 



 
 

 
 

The advantage of this approach is that this is the well-studied minimum cost network flow problem 

with a wealth of efficient algorithms available that find an optimal solution. (the simplex method, 

the ε-relaxation method, the primal-dual algorithm etc.). See e.g. (Matoušek 06), (Ahuja et al. 93) 

or (Chandrasekaran) for a list of other network flow books. 

This approach has a drawback, which can also be illustrated in the above example. The optimal 

solution to the minimum cost network flow problem in our case would be (A). However, this is 

somewhat contrary to our expectations in real life: although cars are more likely to travel along the 

highway, at least some cars are very likely to travel along the local road. Thus, the solution (B) would 

be a more realistic solution. Rather than assigning a cost to a road, we would like to assign a fraction 

of the traffic to an edge. The solution to the problem would then minimise the following function:  

  

    
    

where pe is the proportion of traffic travelling along edge e. Due to the presence of absolute values 

(a more realistic formula would take the square of the absolute value, which introduces another 

nonlinearity) this is no longer a linear equation and the problem becomes much harder. With a bit 

of work, we can however reduce this problem to a (still nonlinear) problem that is easier – the so 

called convex cost minimum network flow problem. This is a generalisation of the minimum cost 

network flow problem, where costs assigned to each edge are not constant, but depend on the 

amount of flow along the edge, i.e. ce is a convex function of f(e). Minimising the above sum is 

equivalent to minimising the cost with the cost function given by the following formula:  

 

 
 

 

However, ce in this formula depends not only on f(e) but also on ifl(v), i.e. it is non separable. It 

turns out that for a given vertices v, it is possible to construct separable (i.e. depending only on f(e)) 

convex functions c'e, such that the sum of the c'e is very close to the sum of the non-separable ce.  

The convex cost minimum network flow problem can be solved efficiently and, in particular, can be 

parallelised, see e.g. (Beraldi et al. 01). Although exact solutions are not necessarily obtained, this 

does not matter since the cost function itself is, by the nature of the problem, not known exactly. 

Moreover, the flow constraints conditions (match-up at intersections) are always satisfied exactly.  

If the above reduction turns out to be too simplifying, the more complex and computationally 

challenging algorithms described in (Nielsen & Zenios 93) or (Ourou et al. 00) will need to be used.  

Estimate reliability  



 
 

The proposed model for calculating the reliability of estimated traffic density is based on the 

assumption that the further we are from a point where a measurement was made, the less reliable 

the estimate is. The estimate calculation will give us traffic densities on single roads – edges of the 

graph – this is called arc-flow in the literature. This can be decomposed to what is called a path-

flow. In other words, given a path through the road network, we know how many cars had actually 

travelled across this path.  

Actually, we do not get traffic densities for any given paths, but the paths for which we do get the 

densities will cover the whole graph. This is all we need for our reliability estimate. We can now 

proceed as follows. Given an edge R in the graph we want to calculate the reliability of the estimated 

value f(R) of traffic density. We first look at all the paths which contain R and which have a density 

estimate. For each such path P, we determine the proportion zP of traffic it contributes to the total 

traffic f(R) through R. We then find the distance dP from R along the path P to a point, where a 

measurement was made. The reliability of f(R) will then be the weighted sum   

  

     
  

where k is some constant between 0 and 1 representing the drop-in reliability when traversing a 

single road.   

  

The proposed model is fairly simplistic and could be elaborated upon. For example, the constant k 

could vary from road to road. Alternatively, we could assign to each measurement point a 

probability distribution (say Gaussian) and then inductively derive the probability distribution for 

the other edges. However, such a computation would still be rather arbitrary, while potentially 

giving the user a false impression of what it actually is. 

 

Creating the Traffic Intensity Map 

Available data 

AADF Counts. 

At a fraction of the roads periodic traffic counts are available. The coverage of the whole network is 

roughly 1% with a higher coverage of major roads. All the traffic counts are prepared using a well-

defined methodology. 

Network Topology 

The road network is available as an undirected graph with each link corresponding to a road and 



 
 

each node corresponding to an intersection1. Moreover, each link has several attributes connected 

to it. For the topology network, the attribute specifying whether it is a one-way or a both-way road 

is most important. Traffic restrictions (i.e. no U-turns, no right-turns, etc.) are also available as a 

separate table. 

We use this information to build a directed graph incorporating all traffic restrictions into the 

topology. This is done in two steps. First, we build a directed graph (each both-way road corresponds 

to two opposite links in the directed graph). Next, we add an origin and destination node for each 

link. We connect the destination nodes of a link L1 with the origin nodes of a link L2 if they were 

originally connected to the same node and the traffic restrictions allow traffic to pass from L1 to L2. 

This modification of the graph has the following important property: each node has either at most 

one incoming link or at most one outgoing link. This property makes it possible to uniquely 

reconstruct path flow from link flow. 

Finally, we classify links according to whether the majority of flow along them is expected to be 

“through flow” (TF) or “originating/terminating flow” (OTF). In graph-theoretic terms, the OTF links 

correspond to (full) subnetworks without cycles (i.e. trees). The OTF links are grouped into areas 

(corresponding to a single tree subnetwork) having a unique connection to the rest of the network. 

The areas are then collapsed (or represented by) the single link connecting them to the “through 

flow” part of the network. These connecting links are initialized with a minimal traffic intensity 

based on residential survey data (cars/household, number of households, ...) and POI data. 

Link Classification 

Each link in the network is classified into five classes according to the importance/usage of the link. 

This classification is based on empirical observation, construction & traffic characteristics (number 

of lanes, maximum speed, capacity) and other inputs. The classification divides the network into 

several subnetworks. It is assumed that the flow on these subnetworks is largely independent in the 

sense that any inter-network flow is balanced – the amount of traffic leaving a subnetwork is equal 

to the amount of traffic entering the subnetwork. 

Deliverables 

• Traffic flow estimate for each link of the network (in the future, flow estimate for paths 

through the network will be available) 

• Reliability assessment of each traffic flow estimate 

• Possibility to update the estimate when new/updated data is available 

Outline of possible approaches 

Traffic is a naturally dynamic phenomenon where traffic flow changes throughout the day. A 

completely accurate model would need to take this into account. There are two main obstacles to a 

                                                

 
1Actually, there are nodes which do not correspond to any intersection in the strict sense. Rather they correspond to a 

place where some important characteristic of the road changes. 



 
 

dynamic model, however. The first is its inherent complexity. Due to the size of the underlying 

structures (in the order of millions of vertices and tens of millions of edges) it is doubtful, whether 

constructing and evaluating such a model would be computationally feasible. A second obstacle is 

the static nature of available data: the AADF counts are averages over time intervals considerably 

larger than would be required to provide data for a dynamic model. It is assumed that at this 

granularity a static model will not introduce more error then already present in the available data. 

We have investigated two possible approaches to modelling the traffic flow. 

Origin-Destination model 
This is the standard model for traffic networks. It is well covered in the literature. The input into this 

model is an OD matrix. Given an OD matrix, there are algorithms for computing a traffic assignment 

which gives rise to the input matrix. Typically, this assignment is required to satisfy an equilibrium 

condition. For an overview see e.g. (Boyce et al. '88). 

The advantage of this approach is the available theory behind the model and the large amount of 

experience with these models. 

There are disadvantages, however. A first disadvantage is the computational complexity of the 

model. It is not clear that it would be feasible to model the whole network (on the order of 10s of 

millions of edges and millions of nodes). This would have to be worked around by splitting the 

network into separate parts and then piece these parts back together. Another disadvantage is that 

the model does not easily account for the accuracy and coverage of data in the sense that it does 

not give a direct reliability estimate of the resulting flow on a single link. The main disadvantage, 

however, is the fact that the input for the model (i.e. the OD matrix) is not available. Rather, the 

data consists of discrete traffic counts, covering a fraction of the network. Even if the counts were 

available for each network link, finding an appropriate OD matrix is a strongly underspecified 

problem. A possible solution, see (Yang et al. '94) or (Abrahamsson '88), would be to start with an 

OD matrix estimate and choose amongst the matrices one that is close to the initial estimate. Given 

the coverage of data, it is likely that this would still be an underspecified problem. 

Flow simulation model 
The flow simulation model calculates network flow by recursively distributing flow derived from 

AADF counts throughout the network, respecting the network topology and the characteristics of 

the individual links. 

The advantages of this approach are its computational and conceptual simplicity. Modifications to 

the algorithm to accommodate different sources/types of information and different requirements 

can be easily implemented since the logic behind the model is very simple. Moreover, it allows for 

reliability assessment, in fact it is even possible to calculate probability distributions for each link 

(however it is not clear that this is reasonable). 

The disadvantage of this approach is that in most cases it likely does not achieve an equilibrium 

solution. Further the model is not guaranteed to give a balanced solution (e.g. one satisfying flow 

conservation) and the output must be postprocessed to achieve flow conservation. Another 



 
 

problem is that areas of the network with a limited amount of AADF counts will not have any flow 

at all. This problem (which is present also in the OD approach) can be mitigated by specifying a lower 

bound for the flow along links based on their construction characteristics or residential survey data. 

Conclusion 
We have chosen the distribution model, mainly because of the unavailability of an OD matrix, the 

simplicity of the model and the availability of a reliability assessment. Moreover, the OD approach 

is methodologically somewhat inappropriate, since the output of the model will be used to build an 

OD matrix, while the OD approach expects a matrix as its input. Given the coverage and accuracy of 

available data it is expected that the OD approach would not be better than a pure guess. As a 

summary, the following are the reasons why we have chosen the distribution model. 

• simplicity 

• methodological soundness 

• reliability assessment available 

Algorithm Description 
The computation is split into two independent phases. In the first phase the simulation model is 

applied to construct an initial flow and a reliability estimate based on the traffic counts, network 

topology and link classification. In the second phase this initial estimate is balanced to satisfy flow 

conservation. The balancing process is carried in such a way so that it minimizes the changes 

necessary to achieve balancing. 

Simulation phase 

During the simulation phase the main question is how to distribute traffic flow between the 

outgoing links of a node. A first possible approach is to split the traffic proportionately according to 

the link classification. We have opted for another approach. We assume that the classification 

divides the network into mostly flow-independent subnetworks, each of which separately satisfies 

flow conservation. We then distribute the traffic in each of the subnetworks separately and split the 

traffic evenly among the outgoing edges in each subnetwork. This means that a traffic count in a 

subnetwork will not directly contribute to the traffic in other subnetworks2. Given the coverage of 

data, this is not very economical. To mitigate this problem, we assume that at links connecting 

different subnetworks a flow exchange between the network happens and this flow exchange does 

not affect flow conservation (i.e. the flow which subnetwork A sends into the subnetwork B is equal 

to the flow subnetwork B sends into the network A). This flow exchange will give us a lower bound 

on the flow along the connecting links. The simulation phase is itself further split into four stages. 

                                                

 
2The situation is a little more complicated in case where the link connecting the subnetworks is a one-way road. See 

implementation details. 



 
 

1. In the first stage, we take each traffic count and distribute the respective flow along the 

subnetwork to which the traffic count belongs. The flow is distributed in the direction of 

traffic. 

2. The second stage is a mirror counterpart of the first stage, where we distribute the flow in 

the reverse direction. 

3. In the third stage we average the results of the first two stages. 

4. In the final stage we iterate along nodes belonging to at least two different subnetworks and 

ensure minimal flow exchange between the subnetworks by recursively assigning 

appropriate lower bounds on links. 

Flow balancing phase 

The second phase balances the results of the first phase to achieve flow conservation while 

departing from the initial estimate as little as possible. This problem can be formally written as 

follows: 

Find flow 

 

 

such that for each node N, the inflow is equal to the outflow, i.e. 

 

 

 

the AADF counts are respected3, i.e. 

 

 

and 

 

 

is minimal, where i(e) is the initial estimate, ce is a positive constant and g(e) is some positive, convex 

function. 

This is equivalent to a minimum convex cost network flow problem. Varying the constants ce,  we can 

control the amount of balancing allowed on links based on the reliability of the initial estimate at 

the link. The g(e) part is used to “enforce” capacity constraints. Making g(e) grow significantly 

outside the capacity constraints we can effectively ensure that the constraints are satisfied if 

                                                

 
3Actually, in some circumstances an AADF count can be changed in the simulation phase. In the balancing phase it 

does not change. See implementation notes for details. 



 
 

consistently possible. The constraint f(e) = count(e) for links with AADF counts is guaranteed by 

introducing source/sink nodes splitting the edges where an AADF count is available. 

The minimum cost network flow problem is well studied. We have used an ε-relaxation method 

from (Bertsekas et al. '97), see also (P. Beraldi et al. '01).  To speed up the computation we have 

allowed both for up and down iterations4 The main advantage of this method is its amenability to 

parallelization5. 

Reliability estimate 
The proposed approach for calculating the reliability of the estimated flow is based on the intuition 

that the farther we are from a point where a measurement was made, the less reliable the estimate 

is. The final result of the computation will give us traffic flow on each link of the network a so-called 

arc-flow. However, in the first phase when we distribute the flows starting from AADF count sites, 

we actually know the path flows6. In other words, given a path through the road network, we know 

how many cars had actually travelled across this path. Actually, we do not know the traffic flow 

along any given paths, but the paths for which we do know the flow will cover the whole graph. This 

is all we need for our reliability estimate. We proceed as follows. Given a link e in the graph we 

calculate the reliability r(e) of the estimated traffic flow f(e). We first look at all the paths which 

contain e and for which we know the flow. For each such path p, we determine the proportion zp of 

traffic it contributes to the total traffic f(e) through e. We then calculated a modified distance dP 

from e along the path p to a AADF count site: 

 

 

 

where cn  is a positive constant < 1 which quantifies the reliability drop when passing through node 

n (along path p). The reliability r(e) of will then be the weighted sum: 

 

 

 

 

 

The proposed model is rather simplistic and could be elaborated upon. For example, the constant c 

could vary from road to road. Or we could assign to each measurement point a probability 

distribution (e.g. gaussian) and then inductively derive the probability distribution for the other 

edges. However, such a computation would still be rather arbitrary while potentially giving the user 

a false impression of what it actually is. Moreover, a precise computation of the distributions would 

                                                

 
4 See (De Leone et al. '95) where the authors show empirical evidence that the down iterations significantly decrease 

the time needed for calculation. This has been confirmed in our own tests. 
5Parallelization is not implemented in the first version of the algorithm. Empirical experiments suggest that the algorithm 

runs reasonably fast. 
6As mentioned in the Network topology section, we can actually always reconstruct the path flow even after the 

balancing phase. This would be more reasonable however due to time constraints it will not be done in the first 
version of the algorithm. 



 
 

be challenging due to having to calculate maximums of several distributions7. 

 

Updating the estimate 
When additional AADF counts are available (or updates to the original AADF counts are made) the 

process above will be modified to allow for faster computation. The simulation phase (which is 

relatively fast) will be run with the new data. On the links that the estimate does not (significantly) 

differ from the results of the simulation phase with the original data, the results of the balancing 

phase with the original data will be used instead of the new simulation estimate. This “merged” 

estimate will then be run through the balancing phase which, depending on the amount of change, 

will run much faster since most of the network will already be balanced. 

Implementation notes 
Input data consistency 

The original design assumed no errors in the AADF counts as a simplification. However, this turned 

out to be too simplistic. There are two types of errors occurring in the AADF counts. One error comes 

from the inaccuracy of the counting process. Since the accuracy of the simulation process is much 

lower, this type of error is not important. A second source of errors is much more relevant however. 

The actual AADF counts are given in a table where each count is identified by geographic coordinates 

and the name of the road counted. In many situations this information does not identify the network 

link uniquely (or there are errors in this information). Since the process of assigning each count to a 

link must be automatic (due to the large volume of data) errors in the assignment are inevitable. A 

wrong assignment may, however, lead to blatantly inconsistent situations. Based on empirical tests 

we have estimated that this type of error affects around 1% of all the AADF measurements. Due to 

time constraints we have chosen to omit the problematic8 measurements altogether. In a 

subsequent version we may try to manually correct the problematic measurements (the number of 

the links is in the order of hundreds). 

Results granularity 

The output of the model will not be precise traffic intensity values on each link. Rather each link will 

be classified into one of several intensity intervals or classes. This is reasonable since the actual 

numbers will be rather arbitrary due to the nature of the simulation process. The number of 

intervals and their exact size and choice will be described in an updated version of this document. 

The same approach has been taken with the reliability estimate where the actual numbers would 

                                                

 
7This could, of course, be overcome. However due to time constraints and the questionable value it would bring we 

have decided not to implement it. 
8E.g. links which have two or more conflicting measurements assigned to them, function class 5 links with 

measurements exceeding 8000 are assumed to be problematic. 



 
 

be hard to interpret for users. The reliability of the estimate will be classified into around 10 classes. 

Simulation phase 

Sometimes the forward/backward runs generate contradicting flows for links where an AADF 

measurement is available. In such cases we have opted to modify the AADF measurement to a 

weighted sum of the forward/backward flow where the weight is given by the reliability of the 

respective flow. In practice the AADF measurement change will not be large, since the flow 

generated by this measurement will have much higher reliability than the other one. 

Another technical detail concerns the case when two subnetworks are connected by one-way links. 

In these cases, flow along the connecting link will actually decrease flow in the source subnetwork. 

Although it is likely that the decrease will be balanced by an increase due to a different link 

connecting the networks in the other direction, we have no way of pairing these links together. To 

avoid inconsistencies in the case of one-way links we have to break the rule of not distributing traffic 

from one subnetwork to the other. 

Complicated topology 

Empirical results show that the model does not always work optimally in places where the topology 

is locally very complex. This is due to the fact that the balancing phase to minimise necessary 

changes prefers some connections over others when there is no empirical reason for this. Since 

these places are relatively rare (we have identified around 5 such situations) it is possible to adjust 

them manually. Moreover, the inaccuracies are limited to the actual place and do not affect 

surrounding traffic.  
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